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Formulas are obtained for the radiating energy and the radiation field 
of charges moving in a gyrotropic medium. These formulas are applied to the 
case of oscillator rotation and also to the case of radiation of an electron 
moving in a given medium with constant velocity (Cerenkov effect). 

* 
* *  

I. INTRODUCTION 

Ginzburg considered in its time [l] the question of the field and of 
emitted energy by charges moving in an anisotropic medium (see also [2]). 
However, the possibility of optical activity (gyrotropy) was not taken into 
account in Guinzburg's works (*). Meanwhile, the emission of electrons, 
moving in gyrotropic media, has certain specific singularities, thus repre- 
senting a known interest. 

We shall resolve the stated problem by the method constituting a further 
generalization of the Hamilton method (see [ 3 ] ) ,  which was applied by Ginz- 
burg in the works previously indicated [l]. 

2.  EQUATIONS FOR POTENTIALS IN A GYROTROPIC 
MEDIUM 

We shall start from field equations in a medium where there is a charge 
- e moving with velocity 3, and also from relations between 8 and 2 

. . I* .  

(*) A medium is called gyrotropic, whenever electromagnetic waves, pro- 
pagating in it with a specific velocity (normal waves), have, generally 
speaking, an elliptical polarization. 
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4r i aD rot H = - (r - re) + - c m C 

In the case of gyrotropic medium considered here, the dielectric constant 
(eao) (a, e = x ,  y, z) 
absence of absorption this tensor is Hermitian [4]: 

represents a complex tensor of second rank [4]. In the 

Let us introduce, as usual, instead of field intensities the potentials 

E=---- ' grad 7 ,  H = rot A. c at (2.7) 

Note that because of gyrotropy property and ( 2 . 6 )  it is practical to con- 
sider during intermediate operations the field vectoss a3 complex+quantities. 
For example, the real value of an electric field is E f E, where E is a quan- 
tity standing in (2.7) etc. 

By substituting (2.7), ( 2 . 3 ) ,  (2.5) into Eqs.(2.1), (2.2), we shall obtain 
for the potentials, the following equations: 

-t -t where 6 is a delta-function; re is the radius-vector of the electron, e, are 
unitary vectors of coordinate axes, k. c. means a complex-conjugate expression. 

For the solution of these equations we shall make use of an additional 
condition, constituting a generalization of the well known condition div I =  0.  

(2.10) 

As a result of this condition's applicationto (2.9), the equation for the 
scalar potential is separated and, upon simplification with the aid of (2.6) 
it assumes the form: 

. ./. . 
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(2.11) 

where Re means the real part of - z. 

3. RADIATION ENERGY 

When computing the field energy of a moving electron, we start from the 
. expression 

In the presence of dispersion, i.e., when eap=f%xp@b), we must make use 
of the general expression 

If we introduce expressions (2,5), (2.7) into (3.1) or (3.2), and if we 
utilize conditions (2.10), we shall obtain that the energy of the field is 
divided in two parts: 

- the energy linked with the longitudinal part of D, 

and 
- the energyglr, linked with the transverse part of D and corresponding 

to the radiation. The expression for 3%tr may be written in the form: 

or, in the presence of dispersion 

where 

Hence it may be seen that the above chosen basic condition (2.10) has 
a simple physical sense: it expresses the fact that the radiation field is 
transverse dtv D" = 0. (3.7) 

In order to compute the energy emitted by the electron, we shall apply 
the Hamilton method, used by Guinzburg [l] in the problem of anisotropic'medium. 
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Let us expand the vectorial potential in Fourier series within the limits of 
a cube with edge L = 1, considering the field at cube boundaries as periodic 
and let us substitute Eq.(2.8) by a system of equations for the coefficients 
of this series. 

We shall write the series in question in the form: 
._ 

where 

4,&( t ) ,  say the “field coordinates” are the functions of time sought for. Rela- 
tion (3.9) expresses the case when the polarization of the emitted waves in 
the considered gyrotropic medium is elliptical. Vectors i i x l  and ~ I A Z  define 
the plane of the ellipse which describes the end of the electric vector. The 
directions and the relative values of these vectors are determined from Eqs. 
(111), (IV) of the Appendix. The index i = 1, 2 corresponds to different 
types of polarization (the so called ordinary and extraordinary waves; see 
Appendix). 

Let us substitute expression (3.8) for A into ( 2 . 8 )  and multiply the so 
obtained equation by 7’4nc (ai,,l- h i & * )  and let us integrate it over the 
volume in which the expansion is performed. 
(2.10) and the periodicity conditionm we obtain a differential equation with 
respect to qiu( t )  

(3.10) 

- 
Having utilized conditions (2.61, 

where 
(3.11) 

Eq.(3.10) is substantially simplified and coincides in form with the 
equation corresponding to the case of vacuum 131, provided we subordinate 
the coefficients QIuf and Q,,,? to conditions: 

Qifil = 1 s  (3.13) 

(3.14) 

These conditions, constituting according to (3.11) and (3.12) the norma- 
lization conditions of 3 , are evidently not independent; indeed, substituting 
into (3.11)-(3.14) the expressions for n2 , 2 (see Appendix) and performing 
a series of simplifications, we become convinced that the fulfillment of one 
of the indicat d conditions converts the other one into an identity. 

Let us now transform the expression (3.4) for the radiation energy. To 
that effect we shall substitute in it (3.6), (3.8), utilize the normalization 
condition, transforming the first addend with the help of (3.11), (3.13), 
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the second addend with the aid of (3.12), (3.14), and we shallapplythe con- 
dition of periodicity. A s  a result we obtain 

(3.15) 

Inasmuch as the radiation field's energy is separated from the energy 
of the carried field, the obtained expression remains valid also in the case 
of the presence of dispersion, when one must start from formula (3.5) (for 
more details on this, see [l]). 

4 .  RADIATION OF AN ELECTRON MOVING UNIFORMLY 
IN A GYROTROPIC MEDIUM 

We shall consider as a first application of the above expounded theory 
the radiation of an electron, uniformly moving in a gyrotropic medium with 
a velocity higher than the phase velocity of light in that medium (Cerenkov 
effect). 
the law: 

The radius-vector of the electron varies in this case according to 

The functions q, ( t )  entering into (3.15) are determined as the solution 
of Eqs.(3.10) at conditions (3 13), (3.14) and (4.1). These solutions, 
satisfying the initial conditions q, = q, = 0 at t = 0, are the following: 

where 

A s  may be seen from Eq.(3.10), and also directly from ( 4 . 2 ) ,  the solu- 
tions, accruing with time and corresponding to the radiation, will take place 
only at resonance condition, i. e. at O ) I , = O ~ .  Therefore, taking into account 
(3.14), we obtain the well known condition for Cerenkov radiation: 

cos 01, = 1 j n d ,  (4 4) 

where 01, is the angle between 2 and 8,, 
from simple interferential considerations and, for that reason, it cannot 
depend on the properties of the medium. The essential peculiarity of a gyro- 
tropic (and generally anisotropic) medium is the dependence of the refractive 
index ni on the propagation direction ni,, = nip ( 8 ,  (P), where 4 is the azi- 
muthal angle in the spherical system of coordinates, in which the direcrion 
of v" is taken for the polar axis. 

B = v/c. This condition follows also 

The wave normals of monochromatic waves of Eerenkov radiation form, ge- 
nerally speaking, two families of conical surfaces, corresponding to ordinary 
and extraordinary waves. 
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Let us substitute the solution ( 4 . 2 )  into (3.15) and leave in the obtain- 
ed sum only the terms corresponding to radiation. Further we shall pass from 
the sum t o  the integral by means of the well known Hamiltonian method [l, 31, 
utilizing the expression for the number of waves with frequencies in the range 
w, w + dw and wave vectors lying in the solid angle equal to unity 131. 

Performing integration over the angle 4 and taking into account that in 
the general case the quantity nip depends on 6, $, we obtain (*) 

I(va,,)s 4- (va,z)'l .: 0 &J 2% 
C V  

( ~ 1 r ) i  ==2= S S i - (1 ., l/.p - i)  (dnipa) 8 
( 4  5) 

u cp-0 

whereupon condition ( 4 , 4 )  must be observed. Let us recall that i = 1, 2 is 
related respectively to ordinary and extraordinary waves. Integration over 
is performed in the interval, where the condition v 2 c/ni(w) is fulfilled. 

Formula ( 4 . 5 )  differs in its form from the corresponding formula for an 
inactive anisotropifltmgdium (see [l, 2 1 )  by the presence of not one but two 
terms of the type (va) . This is linked with the elliptical qolarization of 
norma; waves, which is characterized by two vectors, al, and a2. The expres- 
sions 3 ,  n, cos (&) and others, entering into ( 4 . 5 )  have in the given case 
another, much more complex form than for the inactive medium (see Appendix). 

+ 

In case of isotropic medium formula ( 4 . 5 )  is substantially simplified 
not only on account of polarization nonlinearity as this takes also place in 
the preceding case, but also on the strength of the fact that now n does not 
depend on the direction,&hat is, dn/al8 = 0 .  A s  follows from (3 .17 ) - (3 .14 ) ,  
in an isotropic medium ( ~ 8 ) ~  = (v2/&) sin2@, whence, taking into account ( 4 . 4 )  
and the independence of parameters of 9, we obtain from ( 4 . 5 )  the well known 
Frank and T a m  formula [5] for Cerenkov losses 

( 4 . 5 ' )  

Calculation of Radiation for the Simplest Case 

We shall limit ourselves to application of formula ( 4 . 5 )  to the simplest 
case of a medium characterized by the unique "gyrotropy parameter'' E ~ .  

characterizing a certain gyrotropic crystal. 
obtain a standard isotropic dielectric with dielectric constant E. 
the properties of the medium in the given direction depend on the angle 8 
(cos 8 = y )  , which forms this direction with physically outlined axis 02. 

As may be seen, at E~ = 0, we 
For s8 # 0 
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The medium is then found to be birefringent and gyrotropic. 
sdr (4.6), the index of refraction is determined by formula (V) and the ratio 
a*/ a1 by formula (VI). 
the major axes of the ellipse described by the end of vector 3 (see Appendix). 

In case of ten- 

The directions of vectors 31 and 3 2  is taken along 

In order to find the values of al  according to (3.11) - (3.14), we shall 
make use of relations (VI) - (VII). As a result, we shall obtain 

~ ( n ' y ' - e , ( n ' - c , - e ~ l ~ +  N'y'(i -y')(m'-ey 

a: = [(n'y' - e) (n' - e) - + (n' - e)' + c; (Zn' - e)] n'y' (i - y') (4 7) 

The value of a2 is determined by formulas (4.7) and (VI), taking into 
account the proportionality of the quantities al, a2 and E,, E,. 

We shall consider two physically defined cases of electron motion in 
the considered crystal: the motion along the axiz OZ and the motion perpendi- 
cularly to this axis (*). 

a) The Electron Moves along the Axis OZ. According to the properties 
of vector (see Appendix), in the given case, we have 

(va,) =a S=O- (4 8 )  

From considerations of symmetry it follows that both mentioned cone fa- 
milies will be in the given case circular with axis directed along OZ and 
with uniform distribution of radiation intensity along the cones' cross-sec- 
t ion. 

Condition (4.4) fo5 Eerenkov radiation yields, upon substitution in it 
2 of the expression for nIn2 [see (V)], an equation relative to Y 

whose solution will be 
= cos28, 

(4.10) 

determine the regions of parameters e l ,  Eg, 6, in which radiation takes place 
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In regions a) both types of waves are emitted, - 
(ordinary waves) and in regions c) only type-2 (extraordinary waves). 

in regions .b) only type-1 

Let us now make use of formulas (4.7), (V), (VII), and also of conditions 
(4.4), (4,8) and the symmetry condition. 
the basic formula (4.5) the following expression for energy losses by the elec- 
trom to emission 

Upon simplifications we obtain from 

where integration spreads over the region (4.11). 

b) The Electron Moves Perpendicularly to Axis OZ. In this 
tion pattern no longer has a circular symmetry relative to axis 
preceding case. The conical surfaces of both families now have 

(4.12) 

case the radia- 
OZ as in the 
a complex sha- 

pe, whereupon the radiation intensity on the different generatrices is not 
identical (it is dependent upon the azimuthal angle Cp). 
and $2 the angles forming vectors 21 and 3 2  with electron velocity direction 
v' (let the latter be directed along OY) 

Let us denote by 

A s  follows from the properties of the considered gyrotropic crystal in- 
dicated in the Appendix, following are the relations between the basic angles 
characterizing the emitted waves: 

(4 - 8') cos' 'p 

cos2 *, = cos' + 6' sina$ 

where 
8 = cos 8. 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
--4 

The expression for sin (E , OZ) is determined from (VII). If in (V) we 
introduce for n2 the expression for y2 from (4.13) requiring the fulfillment 
of the radiation condition (4.4), we obtain with respect to 62 a quadratic 
equation with coefficients dependent on E, E ~ ,  6, +. The solution of this 
equation is as follows: 

The inequalities 
O < P < l  

(4.17) 

(4.18) 

determine the regions of parameters E, E ~ ,  6, in which tadiation takes place 

* ./. . 
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Both types  of waves are emi t ted  i n  r eg ions  a ) ,  on ly  type-1 (ord inary  
waves) and type-2 ( ex t r ao rd ina ry  waves) are emi t ted  r e s p e c t i v e l y  i n  r eg ions  
b) and c) . 

I n  o rde r  t o  o b t a i n  a formula of l o s s e s  t o  emission, i t  is necessary t o  
s u b s t i t u t e  i n t o  ( 4 . 5 )  t h e  express ion  f o r  a1 and a2 [see ( 4 . 7 )  and (VI) ] ,  t h e  
express ion  f o r  and q2 [see (4 .14 )  and ( 4 . 1 5 ) ]  and u t i l i z e  t h e  express ion  
(V) and cond i t ions  ( 4 . 4 )  and (4.11).  A s  a r e s u l t  of t h e  ind ica t ed  a c t i o n s ,  
and upon s i m p l i f i c a t i o n ,  w e  o b t a i n  f o r  ($Y~r)l.athe express ion:  

where i n t e g r a t i o n  over  w i s  spread t o  r eg ions ,  whose boundaries  are def ined  
by ( 4 . 1 9 ) .  

Obviously, i n t e g r a t i o n  i n  formulas ( 4 . 1 3 )  and ( 4 . 2 0 )  may c a r r i e d  out  t o  
t h e  end a t  l eas t ,  i n  p r i n c i p l e ,  under t h e  cond i t ion  t h a t  t h e  components of 
t h e  d i e l e c t r i c  t enso r  ( 4 . 6 )  E and are given as a func t ion  of frequency. 

A s  may be seen  from ( 4 . 2 0 ) ,  i n  reg ions ,  where both  types  of waves are e 
emi t ted ,  t h e  express ion  f o r  aggrega te  l o s s e s  t o  r a d i a t i o n  co inc ides  i n  form 
wi th  express ions  ( 4 . 5 ' ) ,  g iv ing  l o s s e s  i n  a n  i s o t r o p i c  medium wi th  d i e l e c t r i c  
cons t an t  E. General ly  speaking,  t h e r e  w i l l  be no q u a n t i t a t i v e  coincidence,  
s i n c e  t h e  i n t e g r a t i o n  r eg ions  over w w i l l  be  d i f f e r e n t .  

I n  t h e  l i m i t i n g  case E + 0, t h a t  i s ,  a t  t r a n s i t i o n  t o  i s o t r o p i c  medium, 
i t  fo l lows  from ( 4 . 1 3 )  and $ 4 . 2 0 )  t h a t  t h e  l o s s e s ,  c o n s t i t u t i n g  i n  t h e  sum 
( 4 . 5 ' ) ,  are d iv ided  equa l ly  between ord inary  and ex t r ao rd ina ry  waves. Mean- 
whi le ,  i t  i s  obvious t h a t  no b i r e f r i n g e n c e  can t a k e  p l a c e  i n  a n  i s o t r o p i c  
medium and t h a t  t h e r e  i s  only  a unique va lue  n: .2 = E .  There is however 
no con t r ad ic t ion .  For E # 0, t h e  "normal" waves are e l l i t p i c a l l y  po la r i zed  
ones,  and t h e  same p o l a r i z a t i o n  cha rac t e r  remains as when E + 0,mthat is ,  
i n  an i s o t r o p i c  medium. But t h e  super impos i t ion  of t h e s e  types  of waves 
y i e l d s  i n  t h a t  medium a s i n g l e  l i nea r ly -po la r i zed  wave, which i s  easy t o  
v e r i f y  . 
s i n g  l o s s e s  t o  Eerenkov r a d i a t i o n ,  mau d ive rge  a t  one of t h e  i n t e g r a t i o n  
l i m i t s .  Th i s  case, impossible  f o r  an  i s o t r o p i c  medium, w a s  a l r eady  noted 
i n  t h e  work of au thor  [ 2 ] ,  devoted t o  e l e c t r o n  l o s s e s  i n  a nonac t ive  aniso-  
t r o p i c  medium. I n  t h e  l i m i t i n g  case of t r a n s i t i o n  t o  i s o t r o p i c  medium, t h e  
reg ion ,  where t h e r e  is divergence,  j u s t  as i n  t h e  preceding case, degenera- 
tes a t  t h e  p o i n t  E = 0. R a n  i s o t r o p i c  medium t h i s  p o i n t  
t o  Cerenkov, bu t  t o  p o l a r i z a t i o n  l o s s e s .  

g 
g 

Note t h a t  i n  both  cases considered i n t e g r a l s  ( 4 . 1 3 )  and ( 4 . 2 0 )  express  
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The question of calculation of polarization losses in an isotropic 
medium with the help of the Hamiltonian method, and also the calculation of 
totA1, as well as of losses to tadiation in a gyrotropic medium by other 
methods will be considered by the present author in a subsequent work. 

5 .  - OSCILLATOR EMISSION 
Let us now find by means of the basic formula (3.15) the radiation energy 

of an oscillator in a gyrotropic medium. The radius-vector of the radiating 
electron Ze varies according to the law: 

rI = roelaJ, (5 1) 

If we assume, as usual, that oscillator dimensions (-ro) are small by 
comparison with the wavelength, we shall be in a position to consider that 
C-lkure - 1,  Taking this into account, and also (5.1) , Ew. (3.10) takes the form: 

The solution of such an equation for initial conditions qi = qi = 0 
at t = 0 is as follows: 

Let us substitute (5.3) into (3.15) and take into account, as is usually 
done in the Hamiltonian method [l, 31, the number of oscillations with frequen- 
cy in the range w, w + dw. A s  a result, we obtain the following expression 
for the energy of waves with the i-th type of polarization (that is, of ordi- 
nary and extraordinary waves), whose normals lie in the solid angle dS1 

Here 8ip1, ar,a are determined according to (3.11)-(3.14) and (111); as 
to the determination of niv , see the Appendix. 
from the case of inactive anisotropic medium [l] by the presence of two and 
not one term (?,Q)2, 
ted waves, and by another form of $ and - n. 

This expression differs 

which is linked with the elliptical polarization of emit- 

Appendix and References follow.. 



11 

A P P E N D I X  

L e t  us  br ing  f o r t h  c e r t a i n  ind i spensab le  d a t a  on t h e  propagat ion  of 
p l ane  w9ves i3 a gyro t rop ic  nonabsorbing medium. 
vec to r  D and E i s  g iven  i n  the case i n  ques t ion  by complex Hermitian tensor  

The r e l a t i o n s h i p  between 

(EorB). 

On t h e  o t h e r  hand, i n  case of p l ane  waves one may o b t a i n  from Maxwellian 
equat ions  t h e  w e l l  known express ion  

-f where n i s  t h e  index of r e f r a c t i o n ,  K is  t h e  u n i t a r y  v e c t o r  of wave normal, 
Gas is t h e  Kronecker symbol. 

According t o  (I) and (11), w e  o b t a i n  a homogenous system of equat ions  
wi th  respect t o  Ex, Ey, E,: 

Equating t o  zero  t h i s  sys tem's  determinant ,  and tak ing  advantage of 
t h e  Hermitian s t a t e  of t e n s o r  w e  o b t a i n  re la t ive t o  n2 a b i q u a d r a t i c  
equat ion ,  which is  not  a p p r o p r i a t e  t o  be w r i t t e n  here .  From t h i s  equat ion  
two d i f f e r e n t  express ions  are obta ined  f o r  n2, of which one corresponds t o  
t h e  o rd ina ry  wave (n:), and t h e  o t h e r  - t o  t h e  ex t r ao rd ina ry  wave (n;). 

The system (111) and t h e  express ion  f o r  n2 provide  t h e  p o p i b i l i t y  of 
f ind ing  wi th  a p r e c i s i o n  t o  t h e  cons t an t  m u l t i p l i e r  of v e c t o r  E component, 
having t h e  form 

E-EE; + iEz: 

where z1 and 3, d e f i n e  t h e  p lane  of t h e  e l l i p s e  which d e s c r i b e s  t h e  end of 
t h e  e lectr i5  vec to r .  
of v e c t o r s  E ,  and 8,. 
perpendicula;, nor  are they  perpendicular  t o  2. 

From (111) one may o b t a i n  an  unl imi ted  number of p a i r s  
In  t h e  gene ra l  case t h e s e  v e c t o r s  are no t  mutual ly  

I n  t h e  p a r t i c u l a r  case of a s impies t  gy ro t rop ic  c r y s t a l ,  descr ibed  by 
t enso r  ( 4 . 6 ) ,  t h e  express ions  f o r  n. E ,  etc. are s u b s t a n t i a l l y  s i m p l i f i e d  
I n  t h i s  case t h e  s o l u t i o n  of the equat ion  f o r  n2 y i e l d s  

i 
Zr (V> ni.2 = - (128% - s i  ti - 7 2 ) ~  eg Vei (1 - y2)2 + 482721, 

where y = cose, 8 being t h e  ang le  between t h e  wave normal and t h e  a x i s  02 of 
t h e  c r y s t a l .  
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-+ -+ 
Now it is practical to take for vectgrs El and E, the main axes of the 

ellipse that describes the end of vector E; 
by the axis of the crystal and the wave normal g, while E, is perpendicular 
to this plane. 

vector 3, lies in a plane formed 
+2 +2 The ratio of the quantities E, and E, is 

The angle between vector and the ax i s  02 of the crystal is determined 
by the relation 

-' 
tg(Et, 02) = n*y VI- (n* - e) 

(n' - 0 )  (flay' - t) - c; ' 

In conclusion, hhe author takes the opportunity to extend his sincere 
thanks to Prof. V. I. Veksler and Prof. V. L. Ginzburg for their interest in 
the work and the discussion of results obtained. 
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